
J. Fluid Mech. (2004), vol. 511, pp. 25–40. c© 2004 Cambridge University Press

DOI: 10.1017/S0022112004007840 Printed in the United Kingdom

25

A new complementary mild-slope equation

By JANG WHAN KIM1 AND KWANG JUNE BAI2
1Department of Ocean and Resources Engineering, SOEST, University of Hawaii at Manoa

and American Bureau of Shipping, 16855 Northchase Drive, Houston, TX77060, USA
2RIMSE and Department of Naval Architecture and Ocean Engineering,

Seoul National University, Korea

(Received 15 March 2001 and in revised form 25 September 2003)

A new depth-integrated equation is derived to model a time-harmonic motion of small-
amplitude waves in water of variable depth. The new equation, which is referred to as
the complementary mild-slope equation here, is derived from Hamilton’s principle in
terms of stream function. In the formulation, the continuity equation is satisfied exactly
in the fluid domain. Also satisfied exactly are the kinematic boundary conditions at
the still water level and the uneven sea bottom. The numerical results of the present
model are compared to the exact linear theory and the existing mild-slope equations
that have been derived from the velocity-potential formulation. The computed results
give better agreement with those of the exact linear theory than the other mild-slope
equations. Comparison shows that the new equation provides accurate results for a
bottom slope up to 1.

1. Introduction
The mild-slope equation has been widely used as an approximate model for the

refraction and diffraction of the linear surface waves in water of variable depth after
the pioneering work of Berkhoff (1973). In this model, a vertical-averaging procedure
is introduced to reduce the governing equations of the full three-dimensional theory
to the depth-integrated equations in the horizontal plane. The assumption of mild
slope is made in order to ignore the higher-order terms that contain bottom slope
and curvature from the depth-integrated equations. The mild-slope equation is known
to work very well for a bottom slope of less than 1/3 (see Booij 1983). Recently,
many attempts have been made to improve the existing mild-slope equations. To
name a few, Massel (1993) and Chamberlain & Porter (1995) derived the modified
mild-slope equation using variational principles and keeping the higher-order terms
that were neglected in Berkhoff’s original derivation. Kirby (1986) used a similar
approach to consider the slope of the rapidly varying component of a ripple bed.
Porter & Staziker (1995) further extended the model by introducing eigenfunctions
for the evanescent modes in addition to the propagating mode. They also provided
the correct jump condition for the modified mild-slope equation in the presence
of a bottom slope discontinuity, which was not properly given in Chamberlain &
Porter (1995). However, Athanassoulis & Belibassakis (1999) pointed out that the
eigenmodes used in the derivation of the modified mild-slope equations could not
satisfy the boundary condition at the uneven sea bottom. As a remedy, they added
an additional term to satisfy the condition and improved the convergence of the
solution to the exact linear theory. In a similar line of approach, Chandrasekera &
Cheung (2001) proposed a two-term expansion of the velocity profile, which satisfies
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the kinematic boundary conditions on the sea bottom exactly. A more thorough
literature survey can be found in Athanassoulis & Belibassakis (1999).

In the present study, we propose an alternative approach to satisfy the bottom
boundary condition exactly. Instead of the potential formulation that has been
used in the previous models, we introduce a variational principle in terms of the
streamfunction theory, which is also known as the complementary variational principle
(see e.g. Bai 1977). It should be noted that the definition of the streamfunction is
extended to the two-component vector potential in a three-dimensional fluid domain
(see Kim et al. 2001). In this streamfunction formulation, the continuity equation in
the fluid domain is also satisfied, as well as the boundary condition on the sea floor.
The variational principle is stated as the stationary condition of a time-averaged
Lagrangian, as described in § 2.1. The new mild-slope equation is derived from the
solution of the variational problem after restricting the vertical profile of the trial
solution as that of the progressive wave solution in the uniform depth in § 2.2. We
refer to the new equation as the complementary mild-slope equation. In § 3.1, a
term-by-term comparison with the existing mild-slope equations is made after the
complementary mild-slope equation is expanded with respect to bottom slope and
curvature. When the second-order terms, such as the bottom curvature and quadratic
of the bottom slope, were neglected, the complementary mild-slope equation reduced
to Berkhoff’s original mild-slope equation. However, the second-order terms of the
complementary mild-slope equation did not agree with those of the modified mild-
slope equation.

The new complementary mild-slope equation is applied to the wave diffraction over
one-dimensional bathymetry. The jump condition over the discontinuity of the bottom
slope and the radiation condition are derived in § 4.1. As a numerical implementation,
the finite-element method is applied after the weak formulation of the complementary
mild-slope equation, as described in § 4.2.

A systematic computation is made to test the accuracy of the complementary
mild-slope equation and results are compared with those of previous mild-slope
equations based on velocity-potential formulation in § 5. The new model provides
better prediction of the wave diffraction over the ripple bed and bottom mound than
the mild-slope equation and the modified mild slope equation.

2. Mathematical formulation
The motion of an inviscid and incompressible fluid with a free surface has usually

been formulated in terms of the velocity potential, which is governed by the Laplace
equation in the fluid domain with appropriate boundary conditions. The exact free-
surface-wave problem is a free-boundary problem which is difficult to solve. To
remedy this difficulty, it is customary to linearize the nonlinear free-surface boundary
condition and we obtain a well-posed boundary-value problem in the potential theory.
This boundary-value problem can also be formulated by classical variational principles
used in the previous derivation of the mild-slope equation (e.g. Chamberlain & Porter
1995; Miles & Chamberlain 1999). We make use of Hamilton’s principle to derive
a complementary mild-slope equation. In the principle, the solution can be obtained
as the stationary point of a time-averaged Lagrangian among the divergence-free
velocity fields that satisfy the kinematic boundary conditions exactly. The Hamilton
principle used here is different from that used in the derivations of the potential-based
mild-slope equations (see, for example, Miles & Chamberlain 1999). In the present
approach, the continuity equation and the kinematic boundary conditions are treated
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as the kinematic constraints and are satisfied exactly, while the irrotational condition
in the fluid domain and the dynamic boundary condition on the mean water level
are satisfied on average (i.e. in a weak sense). On the other hand, in the variational
principle in potential formulation, the irrotational condition is treated as a constraint
and satisfied exactly while the continuity equation is satisfied in a weak sense. The
details on Hamilton’s principle and the derivation of the complementary mild-slope
equation are given in the next section.

2.1. The variational principle

We consider the linear wave motion over a variable bottom topography, z = −h(x, y).
The Cartesian coordinate system Oxyz is defined such that the vertical coordinate
z directs upward and the Oxy-plane is the still-water plane. We introduce complex-
valued functions ζ (x, y), u(x, y, z) and w(x, y, z) to define the time-harmonic motion
of the wave elevation, horizontal velocity vector and vertical velocity component as,
Re[ζ e−iωt ], Re[u e−iωt ] and Re[w e−iωt ], respectively, where ω is the circular frequency
of the incoming wave.

The time-averaged Lagrangian for this problem is given by

L̄ =

∫ ∫
L dx dy,

L = 1
2
ρ

∫ 0

−h(x,y)

{|u · u|2 + |w|2} dz − 1
2
ρg|ζ |2,


 (1)

where ρ and g are the density of the fluid and gravitational constant, respectively, and
L denotes the Lagrangian density. Hamilton’s principle states that the true solution
of the equation of motion makes the time-averaged Lagrangian have a stationary
value among the trial solutions that satisfy the kinematic constraints. The kinematic
constraints in this problem consist of the continuity equation in the fluid domain and
the kinematic boundary conditions on the bottom and the free surface:

∇ · u +
∂w

∂z
= 0, −h < z < 0, (2)

w + ∇h · u = 0, z = −h, (3)

iωζ + w = 0, z = 0, (4)

where ∇ = (∂/∂x, ∂/∂y).
Equations (2), (3) and (4) can be satisfied by introducing a vector potential

Ψ (x, y, z) ≡
∫ z

−h

u(x, y, z0) dz0, (5)

from which the velocity field and wave elevation are defined as

u =
∂Ψ

∂z
, w = −∇ · Ψ , (6)

ζ =
1

iω
∇ · Ψ (x, y, 0). (7)

Note that the bottom boundary condition, (3), is satisfied exactly, because Ψ =0
at z = −h by (5), which leads to ∇ · Ψ (x, y, −h(x, y)) = ∇ · Ψ − ∇h · (∂Ψ /∂z) = −w −
∇h · u = 0. Substituting (6) and (7) into (1), the averaged Lagrangian density is
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given by

L = 1
2
ρ

∫ 0

−h(x,y)

{
|∇ · Ψ |2 +

∣∣∣∣∂Ψ

∂z

∣∣∣∣
2
}

dz − ρ

2ν
|∇ · Ψ (x, y, 0)|2, (8)

where ν = ω2/g. By setting the first variation to be zero, we obtain the following
differential equation as a governing equation and boundary condition for Ψ (x, y, z).

∇(∇ · Ψ ) +
∂2Ψ

∂z2
= 0, −h < z < 0, (9)

∂Ψ

∂z
+

1

ν
∇(∇ · Ψ ) = 0, z = 0. (10)

In taking variations of (8), it was assumed that δΨ vanishes on some lateral
boundaries, which implies that the normal velocity is specified on the lateral boundary.

It can be shown that (9) and (10) lead to irrotationality of the fluid velocity. The
vorticity of the fluid motion can be given by(

∇ + k
∂

∂z

)
× u = k ×

{
∇(∇ · Ψ ) +

∂2Ψ

∂z2

}
+ ∇ × ∂Ψ

∂z
, (11)

where k is the unit vector in z-direction. The first term in the right-hand side of
(11) vanishes because of (9). The vanishing of the second term can be shown after
imposing ∇ × operator on (9) and (10).

In the two dimensions, where we can write Ψ = (ψ, 0), (9) and (10) read

∂2ψ

∂x2
+

∂2ψ

∂z2
= 0, −h < z < 0, (12)

∂ψ

∂z
+

1

ν

∂2ψ

∂x2
= 0, z = 0, (13)

which are the well-known Laplace equation and free-surface condition for stream-
function (see e.g. Bai 1977).

2.2. The complementary mild-slope equation

In the case of uniform water depth, the boundary-value problem (12), (13) with
ψ(x, −h) = 0 has a progressive wave solution,

ψ(x, z) = sinh{k(z + h)} eikx, (14)

where the wavenumber k is the real root of the following dispersion relation,

ν = k tanh kh. (15)

Since a general analytical solution is not available in the case of variable water depth,
we can seek for an approximate solution. To this end, we make use of the z-dependent
behaviour (i.e. vertical mode) of the progressive wave solution in (14) and represent
the solution in the following form:

Ψ (x, y, z) = Ψ 0(x, y)f (h, z), f (h, z) =
sinh[k(h)(z + h)]

sinh k(h)h
, (16)

where k(h) is the local wavenumber defined in (15) and Ψ 0(x, y) is the unknown
function to be obtained. By substituting the assumed form of the solution given in
(16) to (8), we obtain

L = 1
2
a|∇ · Ψ 0|2 + Re{b∇h · Ψ 0∇ · Ψ ∗

0} + 1
2
(−k2a + c∇h · ∇h)|Ψ 0|2, (17)
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where ∗ denotes the complex conjugate and the coefficients a, b and c are real-valued
functions of h(x) and are defined by

a(h) =

∫ 0

−h

f 2 dz − 1

ν
= −coth kh

2k

(
1 +

2kh

sinh 2kh

)
= −gk2

ω4
CCg, (18a)

b(h) =

∫ 0

−h

f
∂f

∂h
dz =

1

4 sinh2 kh

2kh cosh 2kh − sinh 2kh

2kh + sinh 2kh
, (18b)

c(h) =

∫ 0

−h

(
∂f

∂h

)2

dz =
k

12 sinh2 kh

−12kh + 8k3h3 + 3 sinh 4kh + 12(kh)2 sinh 2kh

(2kh + sinh 2kh)2
,

(18c)

where C and Cg are defined as the phase and group velocity of the plane progressive
wave over a uniform depth h, which are given by

C ≡ ω

k
=

√
g tanh kh/k, Cg ≡ dω

dk
=

1

2
C

(
1 +

2kh

sinh 2kh

)
. (19)

The Euler–Lagrange equation for the Lagrangian density given in (17) leads to the
following complementary mild-slope equation:

−∇{a∇ · Ψ 0 + b∇h · Ψ 0} + b∇h∇ · Ψ 0 + (−k2a + c∇h · ∇h)Ψ 0 = 0. (20)

For a uniform depth, where ∇h= 0 and a =const., (20) reduces to

∇{∇ · Ψ 0} + k2Ψ 0 = 0. (21)

Taking curl of (21), it can be shown that Ψ 0 is irrotational and can be written as
Ψ 0 = ∇Φ0, where the auxiliary scalar potential Φ0(x, y) is a solution of the Helmholtz
equation,

∇2Φ0 + k2Φ0 = 0. (22)

Besides the uniform-depth case, the complementary mild-slope equation is in vector
form as in (20), which is a disadvantageous property compared to the potential-based
mild slope equations. In two-dimensional problems, however, the equation reduces
to a single scalar equation. We consider the characteristics of the two-dimensional
equation in the next section.

3. The complementary mild-slope equations in two dimensions
In two dimensions, where we can set Ψ (x, y, z) = (ψ(x, z), 0) and Ψ 0(x, y) =

(ψ0(x), 0), the complementary mild-slope equation, (20), can be written as

− d

dx

(
a
dψ0

dx
+ bh′ψ0

)
+ bh′ dψ0

dx
+ (−k2a + h′2c)ψ0 = 0, (23)

where h′ ≡ dh/dx.
In the next section, we compare the complementary mild-slope equation, (23), with

the existing mild-slope equations based on the velocity potential formulation, such as
the modified mild-slope equation and Berkhoff’s original mild-slope equation.

3.1. Comparisons with modified mild-slope equations

When the bathymetry h(x) is smooth, (23) can be written as

d

dx

(
a
dψ0

dx

)
+ {k2a + bh′′ + (bh − c)h′2}ψ0 = 0, (24)
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where h′′ ≡ d2h/dx2 and bh ≡ db/dh. Then, we will compare (24) with the modified
mild-slope equation,

d

dx

(
u0

dφ

dx

)
+ (k2u0 + u1h

′′ + u2h
′2)φ = 0, (25)

and Birhoff’s mild-slope equation,

d

dx

(
u0

dφ

dx

)
+ k2u0φ = 0, (26)

where φ is the velocity potential on the still-water level and the coefficients are defined
by

u0(h) =
tanh kh

2k

(
1 +

2kh

sinh 2kh

)
=

1

g
CCg, (27a)

u1(h) =
1

4 cosh2 kh

sinh 2kh − 2kh cosh 2kh

2kh + sinh 2kh
, (27b)

u2(h) =
k sec h2kh

12(2kh + sinh 2kh)3
{16(kh)4 + 32(kh)3 sinh 2kh − 9 sinh 2kh sinh 4kh

+ 6kh(2kh + 2 sinh 2kh)(cosh2 2kh − 2 cosh 2kh + 3)}. (27c)

It should be noted that (26) can also be obtained from (25) after discarding the
second-order terms, h′′(x) and h′2(x).

Although (24) and (25) are in the same structure, a direct comparison is not
easy because the complementary mild-slope equation is given in terms of the
streamfunction whereas the modified mild-slope equation is in terms of the velocity
potential. In the following, we compare the two equations with each other after
transforming both equations into the terms of the surface elevation ζ .

First, the transformation of the modified mild-slope equation can be made easily
by the use of the relation ζ = iωφ:

d

dx

(
u0

dζ

dx

)
+ (k2u0 + u1h

′′ + u2h
′2)ζ = 0. (28)

Further expansion of the first term gives

d2ζ

dx2
+ P1h

′ dζ

dx
+ (k2 + P2h

′′ + P3h
′2)ζ = 0, (29)

where

P1(h) =
1

u0

du0

dh
, P2(h) =

u1

u0

, P3(h) =
u2

u0

. (30)

Note that a similar expression for the mild-slope equation given in (26) can be
obtained from (29) by discarding the second-order terms:

d2ζ

dx2
+ P1h

′ dζ

dx
+ k2ζ = 0. (31)

The transformation of the complementary mild-slope equation is a little more
involved. The relation between ζ and ψ0 can be found from (7) as iωζ = dψ0/dx.
Substituting this relation into (24) gives

ψ0 = − iω

k2a + bh′′ + (bh − c)h′2
d

dx
(aζ ). (32)
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Figure 1. Coefficients of complementary and modified mild-slope equations.

Then, the relation iωζ = dψ0/dx gives

d

dx

{
1

k2a + bh′′ + (bh − c)h′2
d

dx
(aζ )

}
+ ζ = 0, (33)

which can be given in a Strum–Louville type equation as

d

dx

{
a2

k2a + bh′′ + (bh − c)h′2
dζ

dx

}
+ a

{
1 +

d

dx

(
2bh′

k2a + bh′′ + (bh − c)h′2

)}
ζ = 0.

(34)

Equation (34) is obviously different from the modified mild-slope equation given in
(28). It contains higher-order terms than the modified mild-slope equation, which has
the second-order terms h′2(x) and h′′(x) as the highest order. For a fair comparison,
(34) is expanded in terms of the bottom slope and curvature up to the second order:

d2ζ

dx2
+ S1h

′ dζ

dx
+ (k2 + S2h

′′ + S3h
′2)ζ = 0, (35)

where

S1(h) =
ah

a
− 2kh

k
, S2(h) =

3b

a
, S3(h) =

3bh − c

a
− 2khah

ka
− a2

h

a2
. (36)

Comparing these coefficients with those of the modified mild-slope equation, given
by (27) and (30), we can find the following relations for the first two coefficients:

S1 = P1, S2 = 3P2. (37)

The remaining coefficients S3(h) and P3(h) do not have such relations and are different
from each other. All of these coefficients are plotted and compared in figure 1. It can
be seen that the terms involved in the second-order terms vanish at the shallow water
(kh ≈ 0) or deep water (kh = ∞) limit. At the intermediate depth, where these terms
are significant, the difference between the complementary and modified mild-slope
equations also becomes significant.

Equations (35) and (37) and figure 1 show that if we take terms up to first order,
the complementary mild-slope equation reduces to Berkhoff’s mild-slope equation.
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However, the second-order terms of the complementary mild-slope equation are
different from those of the modified mild-slope equation. The numerical example
in § 5 shows that the complementary mild-slope equation provides more accurate
results. This implies that the second-order terms in the modified mild-slope equation
are not necessarily the true second-order correction to Berkhoff’s original mild-slope
equation. This is presumably because the velocity field assumed in the modified
mild-slope equation does not satisfy the bottom boundary condition.

3.2. Conservation laws

Massel (1993) has shown that both the modified mild-slope equation (25) and the
mild-slope equation (26) satisfy the following conservation law:

d

dx
Im

[
u0ζ

∗ dζ

dx

]
= 0 or

d

dx
Im

[
CCgζ

∗ dζ

dx

]
= 0. (38)

A similar conservation law for the complementary mild-slope equation can be derived
following the procedure described in Massel (1993) to derive (38). The conservation
law is given by

d

dx
Im

[
a2

k2a + bh′′ + (bh − c)h′2 ζ ∗ dζ

dx

]
= 0,

or

d

dx
Im

[
CCg

1 − (C4/gCCg){bh′′ + (bh − c)h′2}ζ ∗ dζ

dx

]
= 0.




(39)

Equation (39) reduces to (38) when the second-order terms are ignored or when the
water depth is uniform.

A relation between the transmission and reflection coefficient can be derived
from the conservation law given by (39). Assuming the water depth at far up and
downstream are uniform, say h(−∞) = h− and h(∞) = h+, the wave elevation ζ (x) at
up and downstream can be given by

ζ = A(eik−x + R e−ik−x) (x → −∞),

ζ = AT eik+x (x → ∞).

}
(40)

where k− and k+ denote the wavenumber at far up and far downstream.
Substituting these expressions into (39), we obtain

(Cg)h=h−(1 − |R|2) = (Cg)h=h+ |T |2, (41)

which also applies to the full linear theory and other potential-based mild-slope
equations (see Kreisel 1949; Massel 1993).

4. Numerical method for two-dimensional diffraction problem
In two dimensions, the complementary mild-slope equation is given as an ordinary

differential equation in the domain −∞ <x < ∞. Before we present the finite-element
method to solve the equation numerically in § 4.2, we first derive the radiation
condition to confine the computational domain to the finite interval where the bottom
varies.

4.1. Radiation condition

We assume that h(x) is continuous in the whole x-axis and varies only in the interval
0 < x < L, where h(x) is smooth. Outside the variable region, the water depth is
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uniform, i.e.

h(x) = h− (x < 0),

h(x) = h+ (x > L).

}
(42)

If we denote the wavenumbers for the constant depths as k− and k+, respectively, the
asymptotic waves, i.e. the leading terms, in both sides of the interval of varying depth
can be expressed in terms of the incoming, the reflected and the transmitted waves as

ψ0(x) ≡ ψ−
0 (x) =

ωA

k− (eik−x − R e−ik−x) (x < 0), (43)

ψ0(x) ≡ ψ+
0 (x) =

ωA

k+
T eik+x (x > L), (44)

where A is the amplitude of incoming wave and R and T denote the complex
reflection and transmission coefficients. In the following, we will restrict the domain
of the function ψ0(x) in the interval 0 <x <L and refer to ψ−

0 (x) and ψ+
0 (x) as the

solutions in the outer domains at x < 0 and x >L, respectively.
At x = 0 and L, where there could be discontinuity in the bottom slope, ψ0 and

aψ ′
0 + bh′ψ0 should be continuous for (23) to be valid. In the first term of (23), the

derivative should be understood in a generalized (weak) derivative, not in a classical,
sense. Then, we have the following jump condition at these endpoints:

ψ0 = ψ−
0 , a− dψ0

dx
+ b−h′(+0)ψ0 = a− dψ−

0

dx
at x = 0, (45)

ψ0 = ψ+
0 , a+ dψ0

dx
+ b+h′(L − 0)ψ0 = a+ dψ+

0

dx
at x = L, (46)

where a± ≡ a(h±) and b± ≡ b(h±). By the use of (43) and (44), the end conditions,
(45) and (46), result in the following radiation conditions for ψ0:

dψ0

dx
+

{
ik− +

b−h′(+0)

a−

}
ψ0 =

2iA

ω
at x = 0, (47)

dψ0

dx
−

{
ik+ − b+h′(L − 0)

a+

}
ψ0 = 0 at x = L. (48)

4.2. Numerical implementation

As a numerical procedure to solve the complementary mild-slope equation, we use
the finite-element method. The computational domain 0< x < L is divided by Nx − 1
segments of equal length �x = L/(Nx − 1). We use piecewise linear shape functions,
{Ni(x), i = 1, 2, . . . , Nx}, as the bases of the trial and test functions. The shape function
Ni(x) has a value of one at the ith nodal point, xi =(i − 1)�x, and zero at the other
nodal points. In the intervals, the shape function is interpolated linearly. See finite-
element textbooks (i.e. Becker, Carey & Oden 1981) for the explicit form of the shape
functions. Integrating (23) after multiplying by Ni(x) on both sides, we obtain the
weak form of (23) as∫ {

dNi

dx

(
a
dψ0

dx
+ bh′ψ0

)
+ bh′Ni

dψ0

dx
+ (−k2a + h′2c)Niψ0

}
dx

− ik−a(h−)Ni(0)ψ0(0) − ik+a(h+)Ni(L)ψ0(L) =
2iAa(h−)Ni(0)

ω
, (49)
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where integration by parts is made for the first term in (23) and the radiation
conditions, (47) and (48), are embedded during the integration by parts.

We also approximate ψ0(x) by using the same shape functions as

ψ0(x) =

Nx∑
j=1

φjNj (x) (50)

in the interval 0 <x <L. Then the weak form in (49) can be reduced to the following
algebraic equations:

Nx∑
j=1

[ ∫
{aN ′

iN
′
j + bh′(N ′

iNj + NiN
′
j ) + (−k2a + h′2c)NiNj } dx

− ik−a(h−)Ni(0)Nj (0) − ik+a(h+)Ni(L)Nj (L)

]
φj =

2iAa(h−)

ω
Ni(0) (51)

for i = 1, . . . , Nx . Once the algebraic equations (51) are solved and the nodal values
of the stream function, φi , are obtained, the reflection and transmission coefficients
can be obtained from (43) and (44) and the continuity of the streamfunction at x = 0
and L as

R =
k−

ωA
φ1 − 1, T =

k+e−ik+L

ωA
φNx

. (52)

5. Numerical results
To test the accuracy and valid range of the complementary mild-slope equation,

numerical computations are made for the wave diffraction over three different types
of sea bottom. The results are compared to the numerical solution of the full
linear theory. Comparisons are also made with the mild-slope and modified mild-
slope equations. In the case of the modified mild-slope equation, which was derived
by Chamberlain & Porter (1995), the correct radiation condition that satisfies the
conservation of mass, proposed by Porter & Staziker (1995), has been used. The
numerical results for the full linear theory are obtained by use of the localized finite-
element method (Bai & Yeung 1974). The following three examples are take from
Booij (1983) and Porter & Staziker (1995), where the examples were used to test the
accuracy of the potential-based mild-slope equations.

5.1. Booij’s ramp

As the first example, the linear ramp studied by Booij (1983) is tested. The bathymetry
of the ramp is given by

h(x) = h− − h+ − h−

L
x (0 < x < L). (53)

Computations are made by changing the value of L for the condition

h+

h−
= 1

3
,

ω2h−

g
= 0.6. (54)

In figure 2, the reflection coefficient |R| is compared with those of the mild-slope
equation (Booij 1983), modified mild-slope equation (Chamberlain & Porter 1995;
Porter & Staziker 1995) and full linear theory using the localized finite-element
method (Bai & Yeung 1974). The present results shows better agreement with the
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Figure 2. Comparison of computed reflection coefficients for Booij’s ramp. +, exact linear
theory; . . . , mild-slope equation; - - -, modified mild-slope equation (Porter & Staziker 1995);
——, complementary mild-slope equation.

exact solution than the other mild-slope equations when ω2L/g is greater than 0.6 or
the bottom slope is less than 1. When ω2L/g is greater than 0.7, the present result is
indistinguishable from the exact solution.

5.2. Parabolic mound

As the second example, wave transmission over a parabolic mound is studied. The
shape of the parabolic mound is given by

h(x) = h0

{
2

(
x

L

)2

− 2

(
x

L

)
+ 1

}
(0 < x < L). (55)

Porter & Staziker (1995) used the same mound to apply their extended mild-slope
equations. Figure 3 shows the comparison of the reflection coefficients calculated
by four different methods. The complementary mild-slope equation results agree
quite well with the full linear theory when ω2L/g is greater than 2, whereas the
original mild-slope provides poor results in the overall range of the mound length.
The modified mild-slope equation shows a great improvement, but still with a fair
amount of discrepancy. From (55), the maximum slope of the bathymetry is given
by 2h0/L. As in Booij’s ramp case, the present complementary mild-slope equation
model provides accurate results for a bottom slope of less than 1.

5.3. Sinusoidal bed

As the final example, the Bragg scattering over a sinusoidal bed is investigated. The
water depth is uniform outside the sinusoidal bed that lies in the region 0 <x <L,
where the variable topography is given by

h(x) = h0 − δ(x), δ(x) = d sin
2π

l
x (0 < x < L), (56)

where l = L/n and h0 is the water depth in the outer region (h− =h+ = h0). The
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Figure 3. Comparison of computed reflection coefficients for parabolic mound (ω2h0/g =1).
+, exact linear theory; . . . , mild-slope equation; - - -, modified mild-slope equation (Porter &
Staziker 1995); ——, complementary mild-slope equation.

bedform consists of a sequence of n sinusoidal ripples about the mean depth z = −h0.
When 2l/λ= 1, where λ is the wavelength of the incoming wave, significant reflection
occurs owing to the resonant interaction between incoming wave and seabed (see, e.g.
Davies & Heathershaw 1984; Mei 1985).

In figure 4, the computed reflection coefficients for a sinusoidal bed with n= 4 and
l/h0 = 6.4 are shown. Four different amplitudes of the sinusoidal ripple, d/h0 = 0.08,
0.16, 0.32 and 0.64, are considered in the computation. Again, comparisons are
made with the results of the mild-slope equation, extended mild-slope equation and
the finite-element solution of the full potential theory. In the overall range of the
incoming wavelength, λ, and the ripple amplitude, d , the present results fit accurately
to the finite-element results of the full linear theory. The Bragg scattering at 2l/λ= 1
is most accurately predicted by the complementary mild-slope equation than by the
other potential-based mild-slope equations. The modified mild-slope equation shows
better agreement than the mild-slope equation.

At the small ripple amplitude, d/h0 = 0.08, all three mild-slope equations agree well
with the full linear theory. Minor discrepancy was found around 2l/λ= 2 where the
potential-based mild-slope equations show slightly higher reflection than the full linear
theory and the complementary mild-slope equation. The discrepancy around 2l/λ= 2
grows as the ripple amplitude increases. Other than that area, the potential-based mild-
slope equations still agree well with the full linear theory for the ripple amplitudes
up to d/h0 = 0.16. When d/h0 = 0.32 the mild-slope equation deviates not only from
the full linear theory and the complementary mild-slope equation, but also from
the modified mild-slope equation over the whole wavelength range investigated. The
modified mild-slope equation shows better agreement yet. The discrepancy between
the two potential-based mild-slope equations decreases when the ripple amplitude is
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Figure 4. For caption see next page.
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Figure 4. Comparison of computed reflection coefficients for ripple bed. +, exact linear
theory; . . . , mild-slope equation; - - -, modified mild-slope equation; ——, complementary
mild-slope equation. (a) d/h0 = 0.08; (b) 0.16; (c) d/h0 = 0.32; (d) 0.64.

Figure 5. Equipotential lines computed for ripple beds with n= 4, l/h0 = 6.4 and 2l/λ= 1.
Increment of velocity potential value between each equipotential line is 0.2

√
ghA. ——, exact

linear theory; - - -, modified mild-slope equation. (a) d/h0 = 0.32; (b) d/h0 = 0.64.

raised to d/h0 = 0.64, where both equations show significant discrepancy from the
full linear theory. The complementary mild-slope equation still shows good agreement
with the full linear theory at this significantly high ripple amplitude.
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Figure 6. Streamlines computed for ripple beds with n= 4, l/h0 = 6.4 and 2l/λ= 1. Increment
of streamfunction value between each streamline is 0.1

√
ghA. ——, exact linear theory; - - -,

complementary mild-slope equation. (a) d/h0 = 0.32; (b) 0.64.

Note that the potential-based mild-slope equations consistently overestimate the
reflection coefficient near 2l/λ= 2 over the whole ripple amplitude range. Presumably,
this is because of the excessive Bragg scattering due to the inaccurate or missing
second-order terms in the potential-based mild-slope equations that were discussed in
§ 3.1. The complementary mild-slope equation and the full linear theory show some
indication of a weak Bragg scattering near 2l/λ= 2 only when the ripple amplitude
is significantly high, i.e. d/h0 = 0.64 as shown in figure 4(d).

In the numerical results so far, only the reflection coefficient has been compared. A
more detailed comparison of the flow pattern in the fluid domain is made in figures 5
and 6. The equi-potential lines and streamlines computed from the full linear theory
are compared with that from the modified mild-slope equation and the complementary
mild-slope equations, respectively. The compared results are for 2l/λ= 1, where the
reflection coefficient by both the modified and complementary mild-slope equations
shows good agreement with the full linear theory. The equi-potential lines by the
modified mild-slope equation show a discrepancy with that by the full linear theory,
especially near the bottom. The streamlines by the complementary mild-slope equation
show much better agreement for both cases of d/h0 = 0.32 and 0.64, which was
anticipated because the complementary mild-slope equation has been derived with
the velocity fields that satisfies the boundary condition at the bottom exactly, whereas
the velocity fields of the modified mild-slope equation does not.
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6. Conclusions
A new type of mild-slope equation, the complementary mild-slope equation, is

derived from Hamilton’s principle given in terms of streamfunction theory. The
new equation shows better performance than the mild-slope equations derived from
potential theory. The complementary mild-slope equation provides accurate results
for the bottom slope up to 1. The better performance of the present model compared
to the potential-based models is presumably due to the exact satisfaction of the
bottom boundary condition by the eigenfunction in the streamfunction theory. The
new model performed especially well at the sinusoidal beds and bottom mounds.
As a result, the complementary mild-slope equation would be an efficient tool to
predict the wave diffraction over a steep bathymetry such as the coastal area in
the Hawaiian Islands where there are sand bars and reefs on the steep bathymetry.
The numerical implementation of the two-dimensional refraction–diffraction model
is straightforward and will be pursued in the near future.

K. J. B. was supported by the Korea Research Foundation Grant (KRF-2002-005-
D00030).
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